Выполнено ключевое условие для создания квантового интернета
Специалисты Института квантовой оптики им. Макса Планка (Германия) добились серьезного прорыва в создании квантовой памяти — время когерентности хранения кубитов на атоме, пойманном в оптическом резонаторе, составило свыше 100 мсек. Этого достаточно, чтобы создать глобальную квантовую сеть, также известную как квантовый интернет, в котором кубиты смогут напрямую телепортироваться между конечными узлами.
Свет — идеальный носитель квантовой информации, закодированной в отдельных фотонах, но перенос на большие расстояния неэффективен и ненадежен. Прямая телепортация между конечными узлами сети могла бы снизить потери кубитов. Для этого, во-первых, между узлами должна быть создана запутанность; во-вторых, соответствующее измерение со стороны отправителя должно запустить мгновенную передачу кубита в узел получателя. Однако, кубит, достигший получателя, может оказаться перевернут, и его придется повернуть обратно. Все это требует времени, в течение которого кубит должен храниться у получателя. Если узлы расположены на двух самых удаленных друг от друга точках Земли, это время равно 66 мсек.
В 2011 году группа профессора Ремпе продемонстрировала успешную технику хранения фотонного кубита на отдельном атоме, но время хранения ограничено несколькими сотнями микросекунд, пишет Phys.org. «Главная проблема хранения квантовых битов — это феномен сдвига по фазе, — объясняет Штефан Лангенфельд, участник эксперимента. — Характерной чертой квантового бита является относительная фаза волновых функций атомных состояний, когерентно наложенных друг на друга. К несчастью, в полевых испытаниях это фазовое соотношение со временем теряется, в основном из-за взаимодействия с флуктуирующими окружающими магнитными полями».
В новом эксперименте ученые предприняли попытку воздействия на эти флуктуации. Как только информация переносится с фотона на атом, населенность атомного состояния когерентно переносится на другое состояние. Это делается с помощью пары лазерных лучей, индуцирующих рамановский переход. В этой новой конфигурации сохраненный кубит в 500 раз менее чувствителен к флуктуациям магнитного поля. До восстановления сохраненного кубита рамановский переход совершится в обратную сторону. В течение 10 миллисекунд наложение сохраненного фотона и возвращенного фотона составляет 90%. Это значит, что трансфер атомного кубита в менее чувствительное состояние продлевает время когерентности в 10 раз. Другое 10-кратное увеличение возникает из-за так называемого «спинового эхо». В данном случае, населенность двух атомных состояний меняется местами в середине времени хранения. Таким образом, можно сохранять квантовую природу бита в течение более чем 100 миллисекунд.
«Хотя глобальная квантовая сеть, позволяющая надежно и безопасно передавать квантовую информацию, все еще требует большого объема исследований, долгосрочное хранение кубитов является ключевой ее технологией, и мы уверены, что эти улучшения значительно приблизят нас к ее воплощению», — говорит Маттиас Кёрбер, участник эксперимента.